Computer graphics III Multiple Importance Sampling

Jaroslav Křivánek, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

Multiple Importance Sampling in a few slides

Motivation

Diffuse only
Ward BRDF, $\alpha=0.2$ Ward BRDF, $\alpha=0.05$
Ward BRDF, $\alpha=0.01$

What is wrong with BRDF and light source sampling?

- A: None of the two is a good match for the entire integrand under all conditions

$$
L_{\mathrm{r}}\left(\mathbf{x}, \omega_{\mathrm{o}}\right)=\int_{H(\mathbf{x})} L_{\mathrm{i}}\left(\mathbf{x}, \omega_{\mathrm{i}}\right) \cdot f_{r}\left(\mathbf{x}, \omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}} \mathrm{~d} \omega_{\mathrm{i}}
$$

Multiple Importance Sampling (MIS)

[Veach \& Guibas, 95]
Combined estimator:

$$
\langle I\rangle=\frac{f(x)}{\left[p_{a}(x)+p_{b}(x)\right] / 2}
$$

Notes on the previous slide

- We have a complex multimodal integrand $f(x)$ that we want to numerically integrate using a MC method with importance sampling.
- Unfortunately, we do not have a PDF that would mimic the integrand in the entire domain.
- Instead, we can draw the sample from two different PDFs, p_{a} and p_{b} each of which is a good match for the integrand under different conditions - i.e. in different part of the domain.
- However, the estimators corresponding to these two PDFs have extremely high variance - shown on the slide.
- We can use Multiple Importance Sampling (MIS) to combine the sampling techniques corresponding to the two PDFs into a single, robust, combined technique.
- The MIS procedure is extremely simple: it randomly picks one distribution to sample from (p_{a} or p_{b}, say with fifty-fifty chance) and then takes the sample from the selected distribution.
- This essentially corresponds to sampling from a weighted average of the two distributions, which is reflected in the form of the estimator, shown on the slide.
- This estimator is really powerful at suppressing outlier samples such as those that you would obtain by picking x _from the tail of p_{a}, where $f(x)$ might still be large.
- Without having p_{b} at our disposal, we would be dividing the large $f(x)$ by the small $p_{a}(x)$, producing an outlier.
- However, the combined technique has a much higher chance of producing this particular x (because it can sample it also from p_{b}), so the combined estimator divides $f(x)$ by $\left[p_{a}(x)+p_{b}(x)\right] / 2$, which yields a much more reasonable sample value.
- I want to note that what I'm showing here is called the "balance heuristic" and is a part of a wider theory on weighted combinations of estimators proposed by Veach and Guibas.

Application to direct illumination

- Two sampling strategies

1. BRDF-proportional sampling - $\boldsymbol{p}_{\mathrm{a}}$
2. Environment map sampling - $\boldsymbol{p}_{\text {b }}$

... and now the (almost) full story

First for general estimators, so please forget the direct illumination problem for a short while.

Multiple Importance Sampling

(Veach \& Guibas, 95)

CG III (NPGR010) - J. Křivánek 2015

Multiple Importance Sampling

- Given n sampling techniques (i.e. pdfs) $p_{1}(\mathrm{x}), . ., p_{n}(\mathrm{x})$
- We take n_{i} samples $X_{i, 1}$.. , $X_{i, n_{i}}$ from each technique
- Combined estimator

Combination weights (different for each sample)

Unbiasedness of the combined estimator

$$
E[F]=\ldots=\int\left[\sum_{i=1}^{n} w_{i}(x)\right] f(x) \mathrm{d} x \equiv \int f(x)
$$

- Condition on the weighting functions

$$
\forall x: \quad \sum_{i=1}^{n} w_{i}(x)=1
$$

Choice of the weighting functions

- Objective: minimize the variance of the combined estimator

1. Arithmetic average (very bad combination)

$$
w_{i}(x)=\frac{1}{n}
$$

2. Balance heuristic (very good combination)

Balance heuristic

- Combination weights

$$
\hat{w}_{i}(\mathbf{x})=\frac{n_{i} p_{i}(\mathbf{x})}{\sum_{k} n_{k} p_{k}(\mathbf{x})}
$$

- Resulting estimator (after plugging in the weights)

$$
F=\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \frac{f\left(X_{i, j}\right)}{\sum_{k} n_{k} p_{k}\left(X_{i, j}\right)}
$$

- i.e. the form of the contribution of a sample does not depend on the technique (pdf) from which it came

Balance heuristic

- The balance heuristic is almost optimal
- No other weighting has variance much lower than the balance heuristic
- Further possible combination heuristics
- Power heuristic
- Maximum heuristics
- See [Veach 1997]

One term of the combined estimator

CG III (NPGR010) - J. Křivánek 2015

One term of the combined estimator: Arithmetic average
 $$
0.5 \frac{f(x)}{p_{1}(x)}+0.5 \frac{f(x)}{p_{2}(x)}
$$

One term of the combined estimator: Balance heuristic

CG III (NPGR010) - J. Kr̛ivánek 2015

Direct illumination calculation using MIS

We now focus on area lights instead of the motivating example that used environment maps. But the idea is the same.

Problem: Is random BRDF sampling going to find the light source?

reference

Images: Alexander Wilkie

Direct illumination: Two strategies

- We are calculating direct illumination due to a given light source.
- i.e. radiance reflected from a point \mathbf{x} on a surface exclusively due to the light coming directly from the considered source
- Two sampling strategies

1. BRDF-proportional sampling
2. Light source area sampling

Incoming ray R

Image: Alexander Wilkie

Direct illumination: Two strategies

BRDF proportional sampling

Light source area sampling

Direct illumination: BRDF sampling (rehash)

- Integral (integration over the hemisphere above \mathbf{x})

$$
L_{\mathrm{r}}\left(\mathbf{x}, \omega_{\mathrm{o}}\right)=\int_{H(\mathbf{x})} L_{\mathrm{e}}\left(\mathrm{r}\left(\mathbf{x}, \omega_{\mathrm{i}}\right),-\omega_{\mathrm{i}}\right) \cdot f_{r}\left(\mathbf{x}, \omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}} \mathrm{~d} \omega_{\mathrm{i}}
$$

- MC estimator
- Generate random direction $\omega_{\mathrm{i}, k}$ from the pdf p
- Cast a ray from the surface point \mathbf{x} in the direction $\omega_{i, k}$
- If it hits a light source, add $L_{\mathrm{e}}(.) f_{r}(.) \cos / \mathrm{pdf}$

$$
\hat{L}_{\mathrm{r}}\left(\mathbf{x}, \omega_{\mathrm{o}}\right)=\frac{1}{N} \sum_{k=1}^{N} \frac{L_{\mathrm{e}}\left(\mathrm{r}\left(\mathbf{x}, \omega_{\mathrm{i}, k}\right),-\omega_{\mathrm{i}, k}\right) \cdot f_{r}\left(\mathbf{x}, \omega_{\mathrm{i}, k} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}, k}}{p\left(\omega_{\mathrm{i}, k}\right)}
$$

Direct illumination: Light source area sampling (rehash)

- Integral (integration over the light source area)

$$
L_{\mathrm{r}}\left(\mathbf{x}, \omega_{\mathrm{o}}\right)=\int_{A} L_{\mathrm{e}}(\mathbf{y} \rightarrow \mathbf{x}) \cdot f_{r}\left(\mathbf{y} \rightarrow \mathbf{x} \rightarrow \omega_{\mathrm{o}}\right) \cdot V(\mathbf{y} \leftrightarrow \mathbf{x}) \cdot G(\mathbf{y} \leftrightarrow \mathbf{x}) \mathrm{d} A_{\mathbf{y}}
$$

- MC estimator

- Generate a random position \mathbf{y}_{k} on the source
- Test the visibility $\mathrm{V}(\mathrm{x}, \mathrm{y})$ between \mathbf{x} and \mathbf{y}
- If $\mathrm{V}(\mathrm{x}, \mathrm{y})=1$, add $|\mathrm{A}| L_{\mathrm{e}}(\mathbf{y}) f_{r}(\mathrm{r}) \cos / \mathrm{pdf}$

$$
\hat{L}_{\mathrm{r}}\left(\mathbf{x}, \omega_{\mathrm{o}}\right)=\frac{|A|}{N} \sum_{k=1}^{N} L_{\mathrm{e}}\left(\mathbf{y}_{k} \rightarrow \mathbf{x}\right) \cdot f_{r}\left(\mathbf{y}_{k} \rightarrow \mathbf{x} \rightarrow \omega_{\mathrm{o}}\right) \cdot V\left(\mathbf{y}_{k} \leftrightarrow \mathbf{x}\right) \cdot G\left(\mathbf{y}_{k} \leftrightarrow \mathbf{x}\right)
$$

Direct illumination: Two strategies

- BRDF proportional sampling
- Better for large light sources and/or highly glossy BRDFs
- The probability of hitting a small light source is small -> high variance, noise
- Light source area sampling
- Better for smaller light sources
- It is the only possible strategy for point sources
- For large sources, many samples are generated outside the BRDF lobe -> high variance, noise

Direct illumination: Two strategies

- Which strategy should we choose?
- Both!
- Both strategies estimate the same quantity $L_{\mathrm{r}}\left(\mathbf{x}, \omega_{0}\right)$
- A mere sum would estimate $2 \times L_{\mathrm{r}}\left(\mathbf{x}, \omega_{0}\right)$, which is wrong
- We need a weighted average of the techniques, but how to choose the weights? => MIS

How to choose the weights?

- Multiple importance sampling (Veach \& Guibas, 95)
- Weights are functions of the pdf values
- Almost minimizes variance of the combined estimator
- Almost optimal solution

Image: Eric Veach

Direct illumination calculation using MIS

Sampling technique (pdf) p_{1} : Sampling technique (pdf) \mathbf{p}_{2} : BRDF sampling Light source area sampling

Combination

Arithmetic average
Preserves bad properties of both techniques

MIS weight calculation

Sample weight for
BRDF sampling

PDFs

- BRDF sampling: $\mathbf{p}_{\mathbf{1}}(\omega)$
- Depends on the BRDF, e.g. for a Lambertian BRDF:

$$
p_{1}(\omega)=\frac{\cos \theta_{\mathrm{x}}}{\pi}
$$

- Light source area sampling: $\mathbf{p}_{\mathbf{2}}(\omega)$

$$
p_{2}(\omega)=\frac{1}{|A|} \frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{\cos \theta_{\mathbf{y}}}
$$

Conversion of the uniform pdf $1 /|\mathrm{A}|$ from the area measure (dA) to the solid angle measure (d ω)

Contributions of the sampling techniques

w1 * BRDF sampling
w2 * light source area sampling

Other examples of MIS applications

In the following we apply MIS to combine full path sampling techniques for calculating light transport in participating media.

Full transport

rare, fwd-scattering fog
back-scattering high allbedo
back-scattering

Medium transport only

Beam-Beam 1D (=photon beams)
Point-Beam 2D (=BRE)

Bidirectional PT

UPBP (our algorithm) 1 hour

Beam-Beam 1D
Bidirectional PT

